

European Food Safety Authority

Epizootic Haemorrhagic Disease Risk of introduction and spread

Ana Afonso- Animal Health and Welfare Unit

Recent EHD outbreaks (2006-2007)

Egypt

EHDV-7

Saudi Araj

ns – 1

European Food Safety Authority

MEDREONET - 3/12/09

Libya

EHDV-6

Mali

10 \$

Kestern Sahara 📃 🗌 Mauritania

Terms of Reference

- the significance of the presence, origin and occurrence of EHD in susceptible species (specially livestock animals) in the EU neighbour countries
- the possibility of EHD to spread to and within the EU and to persist.
- the role played by different vectors and the means to control them.
- the possible measures to control and eradicate the disease including surveillance, control of vectors, availability of suitable vaccines and other elements.

Working Group

- Mariano Domingo (Chairman)
- Moez Sanaa (Risk assessor)
- Philip Mellor
- William Wilson
- Giovanni Savini
- Yadin Hagai
- Imaldedin Aradaib
- Stephane de LaRocque (FAO)
- Pierre Pastoret (OIE- Observer)
- Federica Monaco (IZS Observer, Art 36)

Reference strains - Institute for Animal Health (IAH) Pirbright UK and at the Arthropod-Borne Animal Diseases Research Laboratory (ABADRL), USA.

Reference strains						
	EHDV-2					
EHDV-1	CAN1962/01 EHDV-2	EHDV-4	EHDV-5	EHDV-6	EHDV-7	EHDV-8
<u>USA1955/01</u>	(Ibaraki virus) <u>JAP1959/01</u> EHDV-3 ^a	<u>NIG1968/01</u>	<u>AUS1977/01</u>	<u>AUS1981/07</u>	<u>AUS1981/06</u>	<u>AUS1982/06</u>
	<u>NIG1967/01</u>					

a:EHDV serotype 3 (Ib Ar 22619) is proposed to be the same serotype as EHDV-1

- Uniform, internationally accepted criteria for EHDV serotype classification and a reviewed list of reference strains and antisera should be established
- Reasons for differences in viral virulence are not understood.

Susceptible hosts

Common name	Infection	Clinical disease	Serotype/detection
	Nat	yes no	2 (Serol) 2 (VI) (Serol)
	Nat	yes	2 (Ibaraki) (VI) (Serol)
Cattle	Nat	yes	6 (VI)
Cattle	Nat	yes	7(VI)
	Nat	no	5 (Serol)
	Nat	no	1, 2, 5, 7, 8 (VI)
Sheep	Ехр	no	1 (VI)
Goat	Nat	no	2, 6 *(Serol)

• There is a considerable lack of information about the susceptibility and the epidemiological role of many domestic and wild ruminant species.

Pathogenesis of infection

•Duration of viraemia in cattle and white-tailed deer may exceed 50 days

- Like with BTV infection with a particular EHDV serotype confers protection against the infection by homologous serotype. Duration of this protection is unknown but indirect field evidences suggest it may last for life.
- A partial cross-protection has been demonstrated between the North American serotypes EHDV-1 and EHDV-2. It is not known if this phenomenon also occurs between other serotypes.
- No cross-protection exists between EHDV and BTV.

Morbidity and Mortality in cattle

serotype	location	Date	Date	Apparent	Apparent	Morbidity	Case
		of	of	morbidity	mortality	per herd	fatality
		start	end				rate
2 (Iba)	Japan	Sep	Nov	1.96 %*	0.2%*	0.01-12.6%	10.3%
		59	59			а	
2 (Iba)	Japan	Sep	Nov	1.16%*	0.06%*		5.8%
		60	60				
2	USA	Aug	Oct			Up to 20%	
		96	96				
7	Israel	Sep	Nov			5-80%	Less than
		06	06				1%
6	Morocco	Jul	Sep	18%	2.2%		
		07	07	(329/1814			
				animals)			
6	Algeria	Jul 06		8%	0.5%		

* total of animals in districts involved in the outbreaks

a depending on district

Clinical signs and lesions: cattle efsa

- Intermediate to high morbidity, low mortality
- Fever, anorexia, weakness, respiratory distress, salivation and nasal discharge, ulcers or erosions of the oral cavity
- •Non-distinguishable from BTV-8
- Significant decrease in milk production.
 - From Temizel et al., 2009

Courtesy of Yadin Hagai

- Clinical signs are similar to BTV-8
- RT-PCR for detection of infection (duration of positivity)
- Competitive ELISA (cELISA) for detection of EHDV serogroup specific antibodies.

None of these techniques are commercially available.

- There is no scientific evidence to suggest that mosquitoes have a role in the transmission of EHDV.
- Can the same vector of BTV be vectors of EHDV?

Species	BTV	EHDV	Abundance in Mediterranean E	Abundance in temperate E	Indoor /outdoor
Culicoides imicola	у	у	+++	-	+/+
Obsoletus complex	У	У	+++	+++	+/+
C. dewulfi	Y PCR	nk	+	+++	+/+
C. chiopterus	Y PCR	nk	+	+++	+/+
Pulicaris complex	у		+++	+++	+/+
C. pulicaris	у	nk	+	+(+)	
C. newsteadi	maybe	nk	+++	+	
C. lupicaris	maybe	nk	(-)	(+)	
C. punctatus	maybe	yes	+(+)	+++	
MEDREONET - 3/12/09					

Epidemiology

- The reasons for the different distributions of BTV and EHDV that have a similar host range and are transmitted by similar species of Culicoides have yet to be elucidated.
- The factors leading to **emergence** of EHDV-6 in North America, and of EHDV-7 in Israel (previously reported only in Australia) are unknown.
- The knowledge on the circulation of the different EHDV serotypes is scant in many parts of the world.
- Reassortment of EHDV strains has been observed in the field

viraemic – days post infection at the time of movement should be less than the viraemia duration

Via imported animals

efsa European Food Safety Authority

If prevalence is 1% and probability of freedom is 0

Expected number of an infected animal being in incubation or viraemic at time of arrival to an EU MS.

*Number of animals per million of animals imported

	Animal Movement				
EHD infection	Uniform(1,365)	Triangular (15,30,45)	Triangular (90,120,150)		
Uniform (1,365)	390*	390	390		
LogNormal(3.4,0.5)	230	3370	30		
LogNormal(3.4,0.9)	230	2420	120		

If prevalence is 1% and probability of freedom is 0

Expected number of an infected animal being in incubation or viraemic at time of arrival to an EU MS after quarantine of 40 days and testing.

*Number of animals per million of animals imported

	Animal Movement				
EHD infection	Uniform(1,365)	Triangular (15,30,45)	Triangular (90,120,150)		
Uniform (1,365)	0.12*	0.12	0.12		
LogNormal(3.4,0.5)	0.07	0.61	0.03		
LogNormal(3.4,0.9)	0.06	0.46	0.05		

Consequence assessment (Gubbins et al 2007)

When an infectious animal is introduced into one geographic area, the risk of EHDV transmission depends on:

- viraemia duration (d);
- the number of vector per animal (m);
- the number of bites per animal and per day (a function of C);
- the probability that infection is transmitted from an infectious animal to a susceptible vector per bite (β_{hv}) ;
- the incubation period in vectors (v function of Temperature)
- the survival of vector individuals (1/ μ = σ function of Temperature)
- the probability that infection is transmitted from an infectious vector to a susceptible animal per bite (β_{vh})

Conclusions

- When quarantine (40 days) and testing for EHDV are in place the probability of importing an infectious animal into a EU MS was considered negligible.
- Without quarantine and testing the probability of introducing an infectious animal was considered not negligible and could be high depending on the animal origin and season of movement.
- Following EHDV introduction by an infectious animal the risk of exposing susceptible animals during periods of vector activity in EU MS was considered high.
- The risk of introduction and spread could be considered negligible when quarantine /testing are applied but without quarantine and testing it is moderate to high depending on the temperature.

Consequence assessment

 the transmission potential of an infected vector to a susceptible animal could be presented as a function of temperature:

 The risk of introduction of EHDV into the EU from neighbouring countries by wind dispersal of vectors was assessed as high

Other routes of entrance

- There is no information available regarding EHDV introduction via germplasm to allow for risk estimation or to infer any valid conclusion.
- The risk posed by contaminated vaccines for EHDV introduction was considered negligible for EU authorized medicinal products.

Conclusions

 Vector abundance and climatic conditions would be favourable to sustain EHDV circulation; therefore, presence of EHDV in neighbouring countries poses a significant risk for introduction and establishment of EHDV in EU.

Recommendations

- Surveillance in high risk areas early detection of disease introduction.
- In case of an outbreak :
 - detection of infected animals, epidemiological investigation, restriction of movements, long term surveillance.
 - If viraemic animals should be detected in a previously free area culling or slaughter of these animals.
 - Mitigation measures on the *Culicoides* vector.
- Vaccines (no EHD vaccines are commercially available).

Thank you for your attention