Bayesian analysis using Gibbs sampler

2 POPULATIONS 2 INDEPENDENT TESTS

- The problem is very similar to that of 1 population 2 independent tests
- Main differences:
 - The two populations are assumed to be characterized by two different values of prevalence of infection
 - Usually, the two tests are assumed to have the same performance in both populations (=same sensitivity and same specificity)

- The last assumption might not always be true:
 - Concerning sensitivity:
 - * A test may have different sensitivities according to the time elapsed from the infection of the animals
 - × e.g., PCR becomes positive very soon after the infection, but
 usually the positivity stays for a few months only; conversely,
 serological tests are slower to become positive, but the positivity
 may remain for several years
 - × This may be a relevant feature in small populations, such as the animals of individual herds
 - Concerning specificity:
 - Depending on the frequency of cross-reacting agents in the population of interest, specificity may vary from a population to another

- Now we will consider the case in which the two tests have the same performance in both populations
- The case in which the two tests have different Se and Sp according with the population is coincident with the case of 1 population 2 tests
- The case in which either the Se or the Sp in one or both tests vary with the population of interest is a straightforward derivation of the case we are now describing

Observed data for two tests in the absence of a gold standard

Population		Test 1		
1		Positive	Negative	Totals
est 2	Positive	T_{1}_{PP}	T_{NP}	$(T_{PP}^1+T_{NP}^1)$
	Negative	T_{PN}	T_{NN}	$(T_{PN}^1+T_{NN}^1)$
L	Totals	$(T1_{PP}+T1_{PN})$	$(T1_{NP}+T1_{NN})$	N ₁

Observed data for two tests in the absence of a gold standard

Population		Test 1		
2		Positive	Negative	Totals
est 2	Positive	T_{2PP}	T_{2NP}	$(T_{PP}^2 + T_{NP}^2)$
	Negative	$T_{2_{PN}}$	$T_{2_{NN}}$	$(T_{2_{PN}}+T_{2_{NN}})$
L	Totals	$(T_{2pp}+T_{2pN})$	$(T_{2_{NP}}+T_{2_{NN}})$	N ₂

Latent data for two tests in the absence of a gold standard

Population 1 Infected		Test 1		
		Positive	Negative	Totals
	Positive	D ₁ _{PP}	D_{NP}^{1}	$(D_{PP}^1+D_{NP}^1)$
st 2	Negative	D_{PN}	D_{1NN}	$(D_{PN}^1+D_{NN}^1)$
Test	Totals	$(D1_{PP}+D1_{PN})$	$(D1_{NP} + D1_{NN})$	$\begin{array}{c} D1_{PP} + D1_{NP} + \\ D1_{PN} + D1_{NN} \end{array}$

Population 1		Test 1		
No	n-Infected	Positive	Negative	Totals
	Positive	$T_{PP}^{1}-D_{PP}^{1}$	$T_{NP}^{1}-D_{NP}^{1}$	$(T_{PP}^1 + T_{NP}^1 - D_{PP}^1 - D_{NP}^1)$
Test 2	Negative	$T_{PN}^{1}-D_{PN}^{1}$	$T_{NN}^{1}-D_{NN}^{1}$	$ \begin{array}{c} (\mathrm{T}_{\mathrm{PN}}^{1} + \mathrm{T}_{\mathrm{NN}}^{1} - \\ \mathrm{D}_{\mathrm{PN}}^{1} - \mathrm{D}_{\mathrm{1}}^{1}) \end{array} $
	Totals	$(T_{1pp} + T_{1pN} - D_{1pp} - D_{1pN})$	$(T1_{NP}+T1_{NN}- D1_{NP}-D1_{NN})$	$N1 - D1_{PP} - D1_{PN}$ $-D1_{NP} - D1_{NN}$

Latent data for two tests in the absence of a gold standard

Population 2 Infected		Test 1		
		Positive	Negative	Totals
st 2	Positive	$D_{2_{PP}}$	D_{2NP}	$(D_{PP}^2 + D_{NP}^2)$
	Negative	$\mathrm{D}_{2_{\mathrm{PN}}}$	$D_{2_{NN}}$	$(D_{2_{PN}}^2 + D_{2_{NN}}^2)$
Test	Totals	(D ₂ _{PP} +D ₂ _{PN})	(D ₂ _{NP} +D ₂ _{NN})	$\begin{array}{c} \mathrm{D}_{\mathrm{2_{PP}}}\mathrm{+D}_{\mathrm{2_{NP}}}\mathrm{+}\\ \mathrm{D}_{\mathrm{2_{PN}}}\mathrm{+D}_{\mathrm{2_{NN}}} \end{array}$

Population 2		Test 1		
No	n-Infected	Positive	Negative	Totals
	Positive	$T_{2pp}-D_{2pp}$	$T_{2NP}^2 - D_{2NP}^2$	$(T_{2pp}^2 + T_{2Np}^2 - D_{2pp}^2 - D_{2Np}^2)$
Test 2	Negative	$T_{PN}-D_{PN}$	$T_{2_{NN}}-D_{2_{NN}}$	$ \begin{array}{c} (\mathrm{T2_{PN}+T2_{NN}-}\\ \mathrm{D2_{PN}-D2_{NN}}) \end{array} $
	Totals	$(T_{2pp}^2 + T_{2pN}^2 - D_{2pp}^2 - D_{2pN}^2)$	$(T2_{NP}+T2_{NN}-D2_{NP}-D2_{NN})$	$N_2 - D_{2pp} - D_{2pN}$ $-D_{2Np} - D_{2NN}$

Likelihood contribution for all latent and observed data

Population 1

Truth = Infected		Test 1	
		Positive	Negative
S	Positive	$D_{1PP} = \pi_1 * Se_1 * Se_2$	$D_{NP}^{1} = \pi_{1} * (1 - Se_{1}) * Se_{2}$
Test	Negative	$D_{PN}^{1} = \pi_{1} * Se_{1} * (1 - Se_{2})$	$D_{NN}^{1} = \pi_{1}^{*} (1 - Se_{1})^{*} (1 - Se_{2})$

Truth = Non- Infected		Test 1		
		Positive	Negative	
1 5 2	Positive	$T_{pp}^{1} - D_{pp}^{1} = (1 - \pi_{1}) * (1 - Sp_{1}) * (1 - Sp_{2})$	$T_{NP}^{1} - D_{NP}^{1} = (1 - \pi_{1}) * Sp_{1} * (1 - Sp_{2})$	
Test	Negative	T_{PN}^{1} - D_{PN}^{1} = $(1 - \pi_{1}) * (1 - Sp_{1}) *$ Sp ₂	$T_{NN}^{1}-D_{NN}^{1}=(1-\pi_{1})*Sp1*$	

Likelihood contribution for all latent and observed data

Population 2

Truth = Infected		Test 1	
		Positive	Negative
S	Positive	$D_{2pp} = \pi_2 * Se_1 * Se_2$	$D_{2_{NP}} = \pi_2 * (1 - Se_1) * Se_2$
Test	Negative	$D_{PN}^2 = \pi_2 * Se_1 * (1 - Se_2)$	$D_{2_{NN}} = \pi_2 * (1 - Se_1) * (1 - Se_2)$

Truth = Non- Infected		Test 1		
		Positive	Negative	
7 7	Positive	$T_{2pp} - D_{2pp} = (1 - \pi_2) * (1 - Sp_1) * (1 - Sp_2)$	$T_{\text{2NP}}^2 - D_{\text{2NP}}^2 = (1 - \pi_2) * \text{Sp1} * (1 - \text{Sp2})$	
Test	Negative	$T_{PN}^2 - D_{PN}^2 = (1 - \pi_2) * (1 - Sp_1) *$ Sp ₂	$T_{2_{NN}}^2 - D_{2_{NN}}^2 = (1 - \pi_2) * Sp1 * Sp2$	

- For each of the two populations (i)
- We can use the contribution to likelihood of each latent class to extract the Di_{PP} , Di_{PN} , Di_{NP} and Di_{NN} values from the proper binomial distributions:

[the formulas are the same as for 1 population 2 tests, just considering the values of the variables relevant for the population under study]

$$D_{iPP} = Binomial \left[T_{iPP}, \frac{\pi_i * Se_1 * Se_2}{\pi_i * Se_1 * Se_2 + (1 - \pi_i) * (1 - Sp_1) * (1 - Sp_2)} \right]$$

$$D_{iNP} = Binomial \left[T_{iNP}, \frac{\pi_i * (1 - Se_1) * Se_2}{\pi_i * (1 - Se_1) * Se_2 + (1 - \pi_i) * Sp_1 * (1 - Sp_2)} \right]$$

- For each of the two populations (i)
- We can use the contribution to likelihood of each latent class to extract the Di_{PP}, Di_{PN}, Di_{NP} and Di_{NN} values from the proper binomial distributions: :

[the formulas are the same as for 1 population 2 tests, just considering the values of the variables relevant for the population under study]

$$D_{iPN} = Binomial \left[T_{iPN}, \frac{\pi_i * Se_1 * (1 - Se_2)}{\pi_i * Se_1 * (1 - Se_2) + (1 - \pi_i) * (1 - Sp_1) * Sp_2} \right]$$

$$D_{iNN} = Binomial \left[T_{iNN}, \frac{\pi_i * (1 - Se_1) * (1 - Se_2)}{\pi_i * (1 - Se_1) * (1 - Se_2) + (1 - \pi_i) * Sp_1 * Sp_2} \right]$$

- When the latent values for the infected and non-infected animals are known, they can be used to estimate the values of π_i , Se1, Se2, Sp1, Sp2
- The procedure is similar to what we have already seen for the case of 1 population and 2 tests

• The posterior probability distributions of π_i , Se1, Se2, Sp1, Sp2 are Beta distributions:

$$\pi_{i} = Beta \left[\left(D_{iPP} + D_{iPN} + D_{iNP} + D_{iNN} \right) + \alpha_{prior}, N_{i} - \left(D_{iPP} + D_{iPN} + D_{iNP} + D_{iNN} \right) + \beta_{prior} \right]$$

$$Se_1 = Beta \left[\sum_{i} (D_{iPP} + D_{iPN}) + \alpha_{prior}, \sum_{i} (D_{iNP} + D_{iNN}) + \beta_{prior} \right]$$

$$Se_2 = Beta \left[\sum_{i} (D_{iPP} + D_{iNP}) + \alpha_{prior}, \sum_{i} (D_{iPN} + D_{iNN}) + \beta_{prior} \right]$$

• The posterior probability distributions of π_i , Se1, Se2, Sp1, Sp2 are Beta distributions:

$$Sp_{1} = Beta \left\{ \sum_{i} \left[\left(T_{iNP} - D_{iNP} \right) + \left(T_{iNN} - D_{iNN} \right) \right] + \alpha_{prior}, \sum_{i} \left[\left(T_{iPP} - D_{iPP} \right) + \left(T_{iPN} - D_{iPN} \right) \right] + \beta_{prior} \right\}$$

$$Sp_{2} = Beta \left\{ \sum_{i} \left[\left(T_{iPN} - D_{iPN} \right) + \left(T_{iNN} - D_{iNN} \right) \right] + \alpha_{prior}, \sum_{i} \left[\left(T_{iPP} - D_{iPP} \right) + \left(T_{iNP} - D_{iNP} \right) \right] + \beta_{prior} \right\}$$

- The process is repeated feeding the results in the first set of equations
- And the values of π_i , Se1, Se2, Sp1 and Sp2 are stored and their frequency distributions will be used to approximate the posterior probability distribution of the parameters

